On the CR–Obata theorem and some extremal problems associated to pseudo scalar curvature on the real ellipsoids in C

نویسندگان

  • Song-Ying Li
  • MyAn Tran
چکیده

where (hαβ) is the positive definite n × n matrix on M , which is uniquely determined by the Levi form Lθ(u, v) = −idθ(u, v) for u, v ∈ H(M). Let ∆sb be the sub-Laplacian with respect to θ (see [8], [22] and [7] for references) and let μ1 be the first positive eigenvalue of ∆sb on (M, θ). Let Rαβ be the Webster pseudo Ricci curvature, R be the pseudo scalar curvature and Tor be the pseudo torsion defined in [26]. Under the condition:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Curvature Groups of a Cr Manifold

We show that any contact form whose Fefferman metric admits a nonzero parallel vector field is pseudo-Einstein of constant pseudohermitian scalar curvature. As an application we compute the curvature groups H(C(M),Γ) of the Fefferman space C(M) of a strictly pseudoconvex real hypersurface M ⊂ C. 1. Statement of results Let M be a strictly pseudoconvex CR manifold of CR dimension n and θ a conta...

متن کامل

Characterization for a class of pseudoconvex domains whose boundaries having positive constant pseudo scalar curvature

Let (M, θ) be a strictly pseudoconvex pseudo-Hermitian compact hypersurface in C in the sense of Webster [34] with a pseudo-Hermitian real oneform θ on M . Let Rθ be the Webster pseudo scalar curvature for M with respect to θ. By the solution of the CR Yamabe problem given by Jerison and Lee [18], Gamara and Yacoub [10] and Gamara [9] (for n = 1), there is a pseudo-Hermitian real one-form θ so ...

متن کامل

Linear Weingarten hypersurfaces in a unit sphere

In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].  

متن کامل

Relative volume comparison theorems in Finsler geometry and their applications

We establish some relative volume comparison theorems for extremal volume forms of‎ ‎Finsler manifolds under suitable curvature bounds‎. ‎As their applications‎, ‎we obtain some results on curvature and topology of Finsler manifolds‎. ‎Our results remove the usual assumption on S-curvature that is needed in the literature‎.

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009